piatok 27. novembra 2015

Are “particles” really “waves”?

When first discovered, particle diffraction was a source of great puzzlement. Are “particles” really “waves”?
In the early experiments, the diffraction patterns were detected holistically by means of a photographic plate, which could not detect individual particles. As a result, the notion grew that particle and wave properties were mutually incompatible, or complementary, in the sense that different measurement apparatuses would be required to observe them. That idea, however, was only an unfortunate generalization from a technological limitation. Today it is possible to detect the arrival of individual electrons, and to see the diffraction pattern emerge as a statistical pattern made up of many small spots (Tonomura et al., 1989). Evidently, quantum particles are indeed particles, but whose behaviour is very different from classical physics would have us to expect.

Where is origin of idea that particles are waves or have a wave-like nature?
Louis-Victor de Broglie formulated the de Broglie hypothesis, claiming that all matter, not just light, has a wave-like nature: lambda = h/p
This is a generalization of Einstein's equation above, since the momentum of a photon is given by p=E/c and the wavelength by lambda=c/f ,where c is the speed of light in vacuum. De Broglie's formula was confirmed three years later for electrons (which differ from photons in having a rest mass)
with the observation of electron diffraction in two independent experiments.
At the University of Aberdeen, George Paget Thomson passed a beam of electrons through a thin metal film and observed the predicted interference patterns. At Bell Labs Clinton Joseph Davisson and Lester Halbert Germer
guided their beam through a crystalline grid. De Broglie was awarded the Nobel Prize for Physics in 1929 for his hypothesis. Thomson and Davisson shared the Nobel Prize for Physics in 1937 for their experimental work.

It is important highlight the fact, that verification were done for De Broglie's formula, not for claiming that all matter has a wave-like nature. And this root of problems. This assumption, automatically accepted by many physicist create confusing situation in QM interpretation of wave function.

Early stage supposing that wave function is wave of matter. This was rejected with experimental result, when detector detect always whole particle only independetly from wave intensity. Second reason is dispersion of wave's packets.


Historicaly, De Broglie believed that wave function represent pilot wave which navigating particle. This idea don't fit with Occam's razor very well, because this require invloving of new phenomenon with unknown nature.
For practical use QM is still best Kopenhagen's intepretation wave function as wave of probability. This intepretaion bearing good explanation  for practical use, but have a lot of strange and still not explained or implicit mysteries like
collaps of wave function, presence of measurement, quantum decoherence, Aspen's experiments, quantum Zeno effect (It describes the situation in which an unstable particle, if observed continuously, will never decay.
This occurs because every measurement causes the wavefunction to "collapse" to a pure eigenstate of the measurement basis.
In the context of this effect, an "observation" can simply be the absorption of a particle, with no observer in any conventional sense.), etc.

Source of pictures:
http://www.livescience.com/24509-light-wave-particle-duality-experiment.html
http://www.wikipedia.com

Universe as projection of loxodrome from hypersphere



Source of pictures: https://en.wikipedia.org/wiki/Stereographic_projection


In article was shown possible geometrical nature of Higgs potential as intrinsic feature of given geometry of loxodrome on hypersphere and its stereographics projection to hyperplane. Such kind of projection has a conformal characteristic and keeps light cone structure under transformation. Relevant fibre space represent a space structure of our universe. Whole Lorentz manifold spacetime is obtained as evolution of S3 fibers, similar like S1 fibers circles on picture 2.
From outside our universe looks like colored rhumb (whole history of S3 points (represent our spacetime) on S4 sphere (representing other quantum degrees of freedom)) line on picture. Total space in this model will be a S7 sphere. This hypersphere contain some internal symetries, conserving charges and atributes of particle physics[10] like colour charge.  S^{4n + 3} => S^{3} => S^{8} = PH^{2} give also chiral symmetry.
This model gives a natural mechanism why we can not observe a magnetic monopole in our universe in spite Dirac quantum condition also. Here is importatnt to mention, that Higgs field in this interpretation is not a phase transition which happened  14 billion years ago, when the temperature of the universe cooled below Lambda(QCD) $. Is intrinsic present as parameter of universe construction from beginning.




Source of pictures: http://www.nilesjohnson.net/hopf.html

pondelok 23. novembra 2015

Why we can't see a magnetic monopoles

A magnetic monopole is a hypothetical particle in particle physics that is a magnet with only one magnetic pole (a north pole without a south pole or vice-versa). In more technical terms, a magnetic monopole would have a net "magnetic charge". Modern interest in the concept stems from particle theories, notably the grand unified and superstring theories, which predict their existence. Magnetism in bar magnets and electromagnets does not arise from magnetic monopoles, and in fact there is no conclusive experimental evidence that magnetic monopoles exist at all in the universe. One of Maxwell's equations, so called Gauss's law for magnetism, is the mathematical statement that there are no magnetic monopoles. As has been showed by Dirac, the theoretical reciprocity between electricity and magnetism is perfect and Dirac showed that if any magnetic monopoles exist in the universe, then all electric charge in the universe must be quantized. 
Good question is, why we can not observe such magnetic monopoles in contrast with electric monopoles? 
Why Nature select not symetrical definition of Maxwell equations? div B = 0 vs. div E = notzero.
Starting from this we can write well known Maxwell's equations, which are invariant under Lorentz transformation. The Lorentz transformations are the isometries which leave the origin fixed. The Lorentz group is a subgroup of the Poincare group, the group of all isometries of Minkowski space-time. Because the restricted Lorentz group SO+(1, 3) is isomorphic to the Moebius group PSL(2,C), its conjugacy classes also fall into four classes: a) elliptic transformations, b) hyperbolic transformations, c) loxodromic transformations, d) parabolic transformations.
Hyperbolic transformation generate from electromagnetic four potential a time space derivation of scalar potential and time derivation of vector potential. This is a definition for electric intensity vector E.
Elliptic transformation generate from electromagnetic four potential antisymmetric space derivation, rotation of vector potential. This is a definition for magnetic induction vector B.
Graphical effect of such transformation after stereographics projection give as visual reason why nature select rule that div B = 0 , magnetic fields (eliptic Moebius transformations) have not a monopoles in plane projection. If our universe is hyperplane from such conformal projection of more symmetric and more dimensional structure, we have mechanism to explain reason, why we can not see magnetic monopoles.


For hyperbolic Moebius transformation after stereographics projection we can see force curves flow generated via monopoles, picture typical for electric charge.


Sources of pictures:
https://en.wikipedia.org/wiki/M%C3%B6bius_transformation
http://physics.stackexchange.com/questions/143119/why-in-a-solenoid-do-the-magnetic-field-lines-resemble-that-of-a-bar-magnet

štvrtok 19. novembra 2015

Existence of R-handed neutrino and neutrino's mass

In the mid-1950s, particle physicists had acquired some experience with three recently discovered unstable particles called pi-mesons or pions and their weak interaction decay characteristics. In 1957 Lederman observed the following decay processes: where the plus and minus pions decay into muons ,  antimuons,  muon antineutrinos  and muon neutrinos. Because neutrinos are uncharged and do not feel the strong force, they are practically ghost particles they rarely interact with anything and hence are extremely difficult to detect. However, muons are charged and can easily be observed in the laboratory. For decay processes in which the pions are initially at rest, the daughter particles must come out back to back in order to conserve momentum. By following the spins and directions of the outgoing muons, Lederman was able to deduce the following rule:

  • ALL NEUTRINOS ARE LEFT-HANDED (described by ' L )
  • ALL ANTINEUTRINOS ARE RIGHT-HANDED (described by ' R ) 

  • Due to neutrinos must be massless and travel at the speed of light if these laws are to hold. Otherwise, a Lorentz transformation could be used to effectively make a neutrino travel in a direction opposite to its line of motion, and the above rules would not hold; in that case, neutrinos and their antimatter partners would both exhibit left and right handedness. Due to Standard model has neutrino massless.
    But is neutrino massless? Oscillation of solar neutrinos shows that not, they are not massless. We are able detect a neutrino only indirect way, through weak decay, where is a product of decay with another well described usually charged particles, which we can well detect. Than as we know R-handed particles are not interacting via weak decay, non diagonal elements of SU(2) matrix. That mean, what we can say is, R-neutrinos not interacting in weak interactions, than ALL NEUTRINOS IN WEAK DECAY ARE LEFT-HANDED. This sentence not exclude a existence of R-HANDED NEUTRINO. 
    Source of pictures:
    http://cosmoso.net/chirality-and-the-asymmetrical-universe/

    štvrtok 12. novembra 2015

    Cimrman

    Filosofie externismu
    prof. Ladislav Smoljak:
    Své filosofické myšlenky zformuloval Cimrman za útoku na baštu extrémního idealismu - filosofii solipsismu. Solipsista, jak známo, tvrdí: Existuji já, neexistuje okolní svět, ten je toliko mou představou.
    Proti této tezi postavil Jára Cimrman tezi svoji: Opak jest pravdou, řekl. Existuje okolní svět, a neexistuji já. A z této teze pak rozvinul filosofický systém, který nazval velice přiléhavě externismem.
    Tato smělá myšlenka vzbudila ve světě takový odpor, že bylo narychlo rozhodnuto svolat do Basileje filosofickou disputaci, na které měl Jára Cimrman své filosofické učení obhájit.
    Jako oponent byl vybrán prof. F. C. Bohlen, který tehdy platil za eso světové filosofie, i když to byl v podstatě jen mazaný obchodník - což bylo jeho původní povolání. Položil Cimrmanovi rafinovanou otázku: Jak mohlo, řekl, neexistující vědomí vyprodukovat svou filosofii?
    Tato otázka zapůsobila. Všichni se domnívali, že Cimrman nebude umět odpovědět.
    Ale Cimrman odpověděl. A odpověděl tak, že filosofu Bohlenovi nezbylo, než aby za posměchu všech přítomných se spuštěnými kalhotami vyběhl ze sálu. Snad abych vysvětlil, proč se spuštěnými kalhotami. .. F. C. Bohlen si totiž uřízl kšandu. Vy to asi chápete jako rčení, ale tehdy býval při filosofických disputacích takový zvyk, že každý, kdo svůj filosofický spor prohrál, si na znamení porážky ulízl šli. Brilantní odpověď Járy Cimrmana vešla takříkajíc do dějin filosofie a najdete ji v každé větší encyklopedii pod heslem “Basilejská Odpověď ”. Cituji z Čepelkova slovníku naučného. Kolega Čepelka byl tak laskav a zapůjčil mi svůj slovník.
    "Pravím-li," řekl Jára Cimrman, "že existuje toliko okolní svět a neexistuji já, neznamená to, že nejsem ve vnějším světě vůbec patrný. Existence a patrnost jsou totiž dvě naprosto různé věci." A dále Jára Cimrman přirovnal okolní svět k jakési ploše. uprostřed níž je místo, kde chybí Jára Cimrman. Jestli dovolíte, vysvětlil bych to názorně. (Papír s dírou.) Tato plocha představuje svět. Vidíte, že Cimrman tu vytváří takovou - řekli bychom - díru, jejíž reliéf je jasně ohraničen, tedy patrný.
    Proces myšlení ve vnějším světě si můžete představit jako napínání a smršťování plochy. Tímto napínáním a smršťováním se zároveň mění reliéf díry, a tato změna nám zase představuje proces myšlení neexistujícího Járy Cimrmana. Už z pouhého názoru je zřejmé, že oba procesy jsou zrcadlově obrácené: rozpínání plochy má za následek zmenšování díry a naopak - smršťování, stahování plochy způsobuje zvětšování otvoru.
    A v tomto místě upozornil Jára Cimrman na zajímavý důsledek své filosofie. Dochází tu k logickému sporu. Tvrdí-li totiž Jára Cimrman, že existuje pouze okolní svět a neexistuje on, platí ve vnějším světě - a tedy objektivně - myšlenka zrcadlově obrácená: existuje pouze on a neexistuje okolní svět. Tedy - filosofie solipsismu. Autor vlastně zastává stanovisko, které zároveň vyvrací. To ještě tenkrát vzbudilo rozpaky. V kongresové hale to vřelo jako v kotli. "Jak se s tím máme vyrovnat?" volali ze zadních lavic představitelé filosofického středu.
    A Jára Cimrman odpověděl: "Vyrovnat se s tím, toť věčný úkol filosofie."

    Teorie poznání
    Prof. Ladislav Smoljak:
    Vídeňský profesor Erich Fiedler uveřejnil v rakouském časopise “Zeitschrift” článek, v němž polemizuje s mou poslední přednáškou o Cimrmanově externismu. Článek nese název: Český “vědec” objevuje Cimrmanovu filozofii. Slovo “vědec” postavil pan profesor Fiedler do ironických uvozovek. Nu, profesionální ješitností já naštěstí netrpím, a tak mohu k tomuto páně profesorovu “allons, enfants de la patrie” říci jen ono cimrmanovské: Gegen Appetit keinen Disputat. A nyní k našemu tématu.
    Teprve nedávno jsem v Einsteinově korespondenci objevil dopis, v němž Cimrman svého přítele seznamuje s definitivním náčrtem externismu. Vysvětluje mu, že podle této filozofie se to má s existencí věcí přesně naopak, než jak to odpovídá běžnému názoru: věc je tam, kde se domníváme, že není, a není tam, kde se domníváme, že je. Tedy populárně řečeno : držím-li v ruce například tuto křídu, pak podle Cimrmana vyplňuje tato křída souvisle celý prostor svého okolí a jedině v místě, které vidíte, tato křída není. To, co držím v ruce, je de facto jen jakási prázdná bublina v souvislém křídovém masivu. Einsteinovi připadal takovýto popis světa pozoruhodný. - V originále označil dokonce Cimrmanovy názory jako “funny”. - Měl však i námitky. Cituji: “Jako fyzik Vás musím upozornit, že na podstatě skutečnosti samé se nic nemění, jestliže VĚC označíte jako PRÁZDNO a prázdné okolí jako VĚC. To je pouhá hra se slovy.” - V originále: “The ping-pong with the words.” - Tolik Einstein.
    A my se ocitáme v klíčovém bodě polemiky s profesorem Fiedlerem. Cimrmanova odpověď se totiž nenašla ani v Einsteinově ani Cimrmanově korespondenci. A to profesoru Fiedlerovi stačilo, aby . . . (mě dal do uvozovek, ale to není důležité), aby o Cimrmanovi dokonce napsal : “Zastyděl se za chatrnou konstrukci svého externismu a filozofování se nadobro vzdal.” Já osobně se domnívám, že by vědec bez uvozovek neměl činit tak unáhlené závěry. Ona totiž Cimrmanova odpověď Albertu Einsteinovi existuje. Mám ji tu před sebou, ale než vás s ní seznámím, musím se zmínit o filozofu F. C. Bohlenovi, jehož jméno vám patrně dnes už nic neříká. Není divu: on působil ve filozofii pouze jako diletant. Vlastním povoláním byl obchodník - měl velikou drogerii v Essenu. A proslul snad jedině tím, že byl na své zákazníky hrubý až sprostý. Nuže - a tento vulgární materialista se tedy pletl i do filozofie. A právě na srovnání s jeho teorií poznání vysvětluje Cimrman Einsteinovi své vlastní poznávací principy. Budu je citovat volně podle Cimrmanova dopisu.
    Tedy : 
    Podle vulgárního materialisty Bohlena je základním pojmem našeho poznání PRAVDA, i když Bohlen připouští, že je zpočátku NEPŘESNÁ. Cimrman naproti tomu říká, že základním pojmem poznání je OMYL, zpočátku samozřejmě PŘESNÝ.
    Jak se naše poznání prohlubuje, dostáváme se do druhé fáze poznávacího procesu, v němž podle Bohlena ZPŘESŇUJEME PRAVDU, kdežto podle Cimrmana pouze VYVRACÍME OMYL.
    Konečným cílem našeho poznání je pak podle Bohlena stav, kdy je pravda už naprosto přesná a my VÍME VŠE. Podle Cimrmana je na konci poznávacího procesu omyl zcela vyvrácen a my NEVÍME NIC.
    Ovšem pozor. Já bych nerad, abyste Cimrmana pokládali za nějakého agnostika či nihilistu. On chápe poznání jako proces v podstatě pozitivní, při němž se vymaňujeme z počátečního omylu, abychom - jak doslova říká - “stanuli nakonec před tváří Všehomíra s hlavou jasnou a prázdnou”. To, že na konci poznání nevíme nic, je jen logickým důsledkem jeho externismu. V procesu poznání se totiž, jak jsme si ukázali na této křídě, blížíme k místu, kde věc není. Dojdeme-li tedy až k objektu samému, nedostaneme se, jak tvrdí Bohlen, k jádru věci, nýbrž šlápneme do prázdna. Takže na konci poznávacího procesu nevíme sice nic, ale zato to víme správně. Kdyby zde ovšem byl profesor Fiedler, jistě by nás rád upozornil na jednu věc, o které my samozřejmě víme také. Jde o známý cimrmanovský rozpor (Cimrmanscher Widerspruch): jeho teorii poznání lze aplikovat na celé jsoucno, ale s jedinou výjimkou - a tou je Cimrmanova teorie poznání samotná. Aplikována sama na sebe samu se totiž vyvrací: buď je OMYLEM, anebo ji NEVÍME.
    Avšak Cimrman si i tady věděl rady. Těsně předtím, než vyslovil svou finální větu NEVÍME NIC, udělal tzv. KROK STRANOU. Tím stanul - ovšem jen na chvilku - na půdě vulgárního materialismu, odkud mohl svou teorii poznání uznat jako objektivně pravdivou.

    Dle F. C. Bohlena   Dle J. Cimrmana
    PRAVDA - nepřesná
      OMYL - přesný
      KROK STRANOU  
    ZPŘESŇUJEME PRAVDU   VYVRACÍME OMYL
    VÍME VŠE   NEVÍME NIC

    Závěry obou teorií spojil pak Cimrman ještě tzv. DVOJTEČKOVÝM OPERÁTOREM, který oběma protichůdným tvrzením dává společné vyústění větou: VÍME VŠE : NEVÍME NIC.